Kernel nonnegative matrix factorization for spectral EEG feature extraction

نویسندگان

  • Hyekyoung Lee
  • Andrzej Cichocki
  • Seungjin Choi
چکیده

Nonnegative matrix factorization (NMF) seeks a decomposition of a nonnegative matrix XX0 into a product of two nonnegative factor matrices UX0 and VX0, such that a discrepancy between X and UV> is minimized. Assuming U 1⁄4 XW in the decomposition (for WX0), kernel NMF (KNMF) is easily derived in the framework of least squares optimization. In this paper we make use of KNMF to extract data, which is an important task in EEG classification. Especially when KNMF with linear kernel is used, spectral features are easily computed by a matrix multiplication, while in the standard NMF multiplicative update should be performed repeatedly with the other factor matrix fixed, or the pseudo-inverse of a matrix is required. Moreover in KNMF with linear kernel, one can easily perform feature selection or data selection, because of its sparsity nature. Experiments on two EEG datasets in brain computer interface (BCI) competition indicate the useful behavior of our proposed methods. & 2009 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonnegative Matrix Factorization Algorithms using a Constraint to Increase the Discriminability of Two Classes for EEG Feature Extraction

Nonnegative matrix factorization (NMF) is an algorithm used for blind source separation. It has been reported that NMF algorithms can be utilized as an effective means to extract features from a motor-imagery related EEG spectrum, which is often used in brain-computer interfaces (BCI). BCI systems enable users to control electrical devices without moving their body parts, and are often tasked w...

متن کامل

Nonnegative Matrix Factorization for Motor Imagery EEG Classification

In this paper, we present a method of feature extraction for motor imagery single trial EEG classification, where we exploit nonnegative matrix factorization (NMF) to select discriminative features in the time-frequency representation of EEG. Experimental results with motor imagery EEG data in BCI competition 2003, show that the method indeed finds meaningful EEG features automatically, while s...

متن کامل

Bayesian Group Nonnegative Matrix Factorization for EEG Analysis

We propose a generative model of a group EEG analysis, based on appropriate kernel assumptions on EEG data. We derive the variational inference update rule using various approximation techniques. The proposed model outperforms the current state-of-the-art algorithms in terms of common pattern extraction. The validity of the proposed model is tested on the BCI competition dataset.

متن کامل

Algorithms and applications for approximate nonnegative matrix factorization

In this paper we discuss the development and use of low-rank approximate nonnegative matrix factorization (NMF) algorithms for feature extraction and identification in the fields of text mining and spectral data analysis. The evolution and convergence properties of hybrid methods based on both sparsity and smoothness constraints for the resulting nonnegative matrix factors are discussed. The in...

متن کامل

A Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization

This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurocomputing

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2009